A New Hope
There is new hope for incandescent light bulbs. Shooting them with lasers can raise their efficiency dramatically.
An ultra-powerful laser can turn regular incandescent light bulbs into power-sippers, say optics researchers at the University of Rochester. The process could make a light as bright as a 100-watt bulb consume less electricity than a 60-watt bulb while remaining far cheaper and radiating a more pleasant light than a fluorescent bulb can.Now that is promising. But wait. There is more.
The laser process creates a unique array of nano- and micro-scale structures on the surface of a regular tungsten filament—the tiny wire inside a light bulb—and theses structures make the tungsten become far more effective at radiating light.
The findings will be published in an upcoming issue of the journal Physical Review Letters.
"We've been experimenting with the way ultra-fast lasers change metals, and we wondered what would happen if we trained the laser on a filament," says Chunlei Guo, associate professor of optics at the University of Rochester. "We fired the laser beam right through the glass of the bulb and altered a small area on the filament. When we lit the bulb, we could actually see this one patch was clearly brighter than the rest of the filament, but there was no change in the bulb's energy usage."
In addition to increasing the brightness of a bulb, Guo's process can be used to tune the color of the light as well. In 2008, his team used a similar process to change the color of nearly any metal to blue, golden, and gray, in addition to the black he'd already accomplished. Guo and Vorobyev used that knowledge of how to control the size and shape of the nanostructures—and thus what colors of light those structures absorb and radiate—to change the amount of each wavelength of light the tungsten filament radiates. Though Guo cannot yet make a simple bulb shine pure blue, for instance, he can change the overall radiated spectrum so that the tungsten, which normally radiates a yellowish light, could radiate a more purely white light.Let a guy loose with a laser and some spare time and you never know what might happen.
Guo's team has even been able to make a filament radiate partially polarized light, which until now has been impossible to do without special filters that reduce the bulb's efficiency. By creating nanostructures in tight, parallel rows, some light that emits from the filament becomes polarized.
The team is now working to discover what other aspects of a common light bulb they might be able to control. Fortunately, despite the incredible intensity involved, the femtosecond laser can be powered by a simple wall outlet, meaning that when the process is refined, implementing it to augment regular light bulbs should be relatively simple.
Guo is also announcing this month in Applied Physics Letters a technique using a similar femtosecond laser process to make a piece of metal automatically move liquid around its surface, even lifting a liquid up against gravity.
And to think it all started with Edison. Did you know that you can buy a replica 1890 Edison 40 Watt Light Bulb? Me either. You can read some history on how we got where we are today in terms of light and electricity in: Empires of Light: Edison, Tesla, Westinghouse, and the Race to Electrify the World. Did you know that Tesla started us on the path to fluorescent bulb technology? And the wonders are still coming.
H/T jgarry at Talk Polywell
Cross Posted at Classical Values
No comments:
Post a Comment